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a b s t r a c t

In this paper, we investigate a sequential maximum likelihood estimator of the unknown
drift parameter for a class of reflected generalized Ornstein–Uhlenbeck processes driven
by spectrally positive Lévy processes. In both of the cases of negative drift and positive
drift, we prove that the sequential maximum likelihood estimator of the drift parameter is
closed, unbiased, normally distributed and strongly consistent. Finally a numerical test is
presented to illustrate the efficiency of the estimator.
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1. Introduction

In this paper, we explore a sequential maximum likelihood estimator (SMLE) of the unknown drift parameter for the
following reflected generalized Ornstein–Uhlenbeck process (RGOU) driven by a spectrally positive Lévy process:

Xt = x0 − α

 t

0
Xsds + σWt + Yt + Lt ≥ b, t > 0,

x0 ≥ b, (1)

where W = (Wt; t ≥ 0) is a standard Brownian motion and Y = (Yt; t ≥ 0) denotes a spectrally positive pure jump Lévy
process (which is independent of W ) on a complete filtered probability space (Ω, F , (Ft; t ≥ 0), P), where the filtration
F = (Ft; t ≥ 0) satisfies the usual conditions.

We here call the constant α ∈ R the drift parameter of the RGOU process X = (Xt; t ≥ 0), which is unknown in this
paper. The positive constant σ is the given volatility rate. The nonnegative process L = (Lt; t ≥ 0) is called the regulator
at the lower reflecting barrier b ≥ 0 (see Harrison, 1986). By virtue of Ata et al. (2005), the paths of the regulator L are
nondecreasing, r.c.l.l. (right continuous with left limits) and possess the following support property:

Lt =

 t

0
1{Xs=b}dLs (2)
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for all positive t , where 1A denotes the indicator associated to the set A. Due to the appearance of the regulator L in (1), the
RGOU process Xt ≥ b for all positive t . In general, the regulator L has jumps, whose sizes can be identified by

1Lt := Lt − Lt− = (b − 1Yt − Xt−)+, (3)

for all positive t . However, in our setting of the Lévy process Y , the jump’s amplitude of Y , 1Yt := Yt − Yt− ≥ 0 for all
positive t . Hence 1Lt vanishes because Xt− ≥ b for all positive t . This shows that there exists a continuous modification to
the regulator L. We here use this continuous modification in (1) and yet denote it by L.

The aim of this paper is to study the statistical inference for the RGOU process X given by (1). More precisely, we would
estimate the unknown drift α in (1) based on a continuous observation of the state process X up to a certain predetermined
level of precision by proposing to use a SMLE. Similarly to the case of MLE, the SMLE is carried out in the second-order
sense. Hence we here assume that E[Y 2

1 ] < ∞ throughout the paper. The MLE for the drift parameter of ROU processes
driven by Brownian motions was first studied by Bo et al. (2011b). However, as pointed out by Lee et al. (2012), the MLE
is not unbiased (see also Theorem 3.3 in Bo et al., 2011b). They proposed a SMLE of the unknown drift of the ROU process
without jumps. Accordingly, a natural idea is to extend the SMLE of the drift of the continuous ROU process to that of the
ROU process with jumps. In our jump’s case, we prove that the SMLE associated with the unknown drift is closed, unbiased,
normally distributed and strongly consistent. On the other hand, the reflected jump-diffusion (or Lévy) processes have been
extensively investigated in the literature (Asmussen et al., 2004; Asmussen and Pihlsgard, 2007; Atar and Budhiraja, 2002;
Avramet al., 2004, 2007; Bo et al., 2011a, in press, 2012; Xing et al., 2009),where the stationary property of the RGOUprocess
(1) was discussed in Xing et al. (2009) when the drift α > 0. As far as we know, there is no relevant research concerning the
SMLE for the RGOU process (1).

The rest of the paper is organized as follows. We prove a relationship between the regulator and the local time of
the RGOU process in Section 2. We then establish the SMLE of the unknown drift of the RGOU process in terms of the
local time and the observed process itself in Section 3. In the same section, we prove that the SMLE of the drift is closed,
unbiased, normally distributed and strongly consistent. At the end of this section, the case of two-sided reflection is also
presented as a remark. Finally,wepresent somenumerical illustrations for the efficiency of the proposed estimator in the last
section.

Throughout the paper, we use the conventions: d

c
=


(c,d]

, and


∞

c
=


(c,∞)

,

for any real numbers c ≤ d.

2. Regulator and local time of RGOU process

It is well known that the pure jump Lévy process Y = (Yt; t ≥ 0) admits the following Lévy–Itô decomposition:

Yt = Y0 + mt +

 t

0


{y>1}

yN(dy, ds) +

 t

0


{0<y≤1}

yN(dy, ds),

where Y0 ∈ R is the initial value of Y ,m ∈ R, the Poisson randommeasure N has the representation:

N(A × (0, t]) =


s≤t

1{1Ys∈A}, ∀ A ∈ B(R+),

and the corresponding compensated Poisson randommeasureN with compensator ν on B(R+) is given byN(A × (0, t]) = N(A × (0, t]) − tν(A).

The following result shows that the regulator L in (1) is closely related to the local time of the RGOU process X at point b.

Proposition 1. Let ℓb
= (ℓb

t ; t ≥ 0) represent the local time process for the semimartingale X given by (1) at point b. Then the
regulator L has the following expression in term of the local time ℓb:

Lt =
1
2
ℓb
t − αb

 t

0
1{Xs=b}ds

=
1
2
ℓb
t , ∀ t ≥ 0, (4)

where α ∈ R is the drift parameter of the RGOU process X given by (1) and b ≥ 0 is the lower reflecting barrier of X.
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Proof. Apply Tanaka’s formula to the semimartingale X , we conclude that

(Xt − b)+ = (x0 − b)+ +

 t

0
1{Xs−>b}dXs +


0<s≤t

1{Xs−>b}(Xs − b)− +


0<s≤t

1{Xs−≤b}(Xs − b)+ +
1
2
ℓb
t . (5)

Noting that Xt ≥ b for all t ≥ 0. Then the 2nd line of the above display vanishes and the r.h.s. of the 1st line of the above
display equals

Xt − x0 −

 t

0
1{Xs−=b}dXs.

The 4th term of r.h.s. of (5) reduces to
0<s≤t

1{Xs−=b}(Xs − b).

Let X c
t = Xt −


s≤t 1Xs be the continuous part of the semimartingale X . Then

Xt − b = x0 − b + Xt − x0 −

 t

0
1{Xs−=b}dX c

s −


0<s≤t

1{Xs−=b}1Xs +


0<s≤t

1{Xs−=b}(Xs − b) +
1
2
ℓb
t ,

which leads to the following equality by a simple calculation: t

0
1{Xs−=b}dX c

s =
1
2
ℓb
t .

By employing (2), it follows that

σ

 t

0
1{Xs=b}dWs =

1
2
ℓb
t − Lt − αb

 t

0
1{Xs=b}ds,

which further implies that σ
 t
0 1{Xs=b}dWs = 0 for all t ≥ 0, since a continuous local martingale with finite variation equals

its initial value. Finally we verify that the time of the RGOU process X spent on the barrier b has Lebesgue measure zero. In
fact, as a simple consequence of the occupation time formula (see Page 219 in Protter, 2005), we have P-a.s. t

0
1{Xs=b}d[X c, X c

]s =


R
1{a=b}ℓ

a
t da = ℓb

t


R
1{a=b}da = 0, ∀ t ≥ 0.

Note that [X c, X c
]t = σ 2t for all positive t . The above equality yields that t

0
1{Xs=b}ds = 0, P-a.s.,

for all t ≥ 0. This proves the equality (4). �

Remark 2. Compared with the regulator L satisfying the property (2), the local time ℓb (and hence L) can be identified by
the paths of the semimartingale X as follows:

ℓb
t = lim

ε→0

1
ε

 t

0
1{b≤Xs≤b+ε}d[X c, X c

]s

= lim
ε→0

σ 2

ε

 t

0
1{Xs≤b+ε}ds, P-a.s., ∀ t ≥ 0, (6)

since Xt ≥ b and [X c, X c
]t = σ 2t for all positive t (see Page 230 in Protter, 2005).

3. Sequential maximum likelihood estimation

In this section, we consider using the SMLE

τ(H),ατ(H)


(see Theorem 3) to estimate the unknown drift α of the RGOU

process X described as (1). Here, the random time τ(H) is defined to be a stopping time which is the first time such that
the observed Fisher information of the RGOU process exceeds a predetermined level of precision H andατ(H) is a sequential
estimator of the drift α tracking at τ(H).

More specifically, the tracking stopping time is defined to be

τ(H) = inf

t > 0;

 t

0
|Xs|

2ds ≥ H


, (7)
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where the predetermined level of precision 0 < H < ∞, which is Fτ(H)-measurable (see, e.g., Problem 2.13 on Page 8
in Karatzas and Shreve, 1991). The sequential estimator


τ(H),ατ(H)


will be established in the following main theorem of

this paper.

Theorem 3. Let the randompair (τ (H),ατ(H)) be the sequential estimation planwith the observation stopping time τ(H) defined
as (7). Then the SMLE of the unknown drift α is established by

ατ(H) =
1
H


bLτ(H) −

 τ(H)

0
XtdX c

t


,

=
1
H


b
2
ℓb

τ(H) −

 τ(H)

0
XtdX c

t


, (8)

where L is the regulator of the RGOU process X and X c is the continuous counterpart of X. The process ℓb is the local time of X at
point b (see Proposition 1 and Remark 2 in Section 1). Moreover, we have

(i) The sequential estimator

τ(H),ατ(H)


established as above is closed. In other words, for each H ∈ (0, ∞),

Pα (τ (H) < ∞) = 1 for all α ∈ (−∞, ∞),

where Pα is the probability measure induced by the RGOU process X given by (1) with drift α.
(ii) The sequential estimator is unbiased, i.e., for each H ∈ (0, ∞),

Eα

ατ(H)


= α, for all α ∈ (−∞, ∞),

where Eα denotes the expectation operator corresponding to the probability measure Pα .
(iii) For each H > 0 fixed, it holds that

√
H

ατ(H) − α


∼ N(0, σ 2),

where N(0, σ 2) denotes the normal distribution with mean zero and variance σ 2 > 0.
(iv) The sequential estimator is strongly consistent. Namelyατ(H) → α, P-a.s.

when H → ∞.

Remark 4. If the lower reflecting barrier b = 0 (see, e.g., Asmussen et al., 2004; Asmussen and Pihlsgard, 2007; Avram et al.,
2004, 2007; Xing et al., 2009), i.e. the RGOU process X reflects at barrier 0, then in this case, the SMLE (8) is given by

ατ(H) = −
1
H

 τ(H)

0
XtdX c

t ,

where 0 < H < +∞.

Proof of Theorem 3. Let θ, α be any two real numbers. Suppose that (Xθ , Lθ ) and (Xα, Lα) satisfy the following reflected
stochastic differential equations (RSDEs), respectively:

dXk
t = −kXk

t dt + σdWt + dYt + dLkt ,

Lkt =

 t

0
1

{Xk
s =b}dL

k
s ,

Xk
t ≥ b, ∀ t ≥ 0,

where k ∈ {θ, α}. For each k ∈ {θ, α}, let Pk
τ(H),X denote the induced probability measure by the RGOU process Xk,τ (H)

=

(Xk
t∧τ(H); t ≥ 0) on the Skorohod space D(R+; R+). Then Pθ

τ(H),X and Pα
τ(H),X are mutually equivalent and the corresponding

Radon–Nikodym derivative is given by

Pα
τ(H),X

Pθ
τ(H),X

 F Xθ

τ(H) = exp

−

α − θ

σ

 τ(H)

0
Xθ
t dWt −

(α − θ)2

2σ 2

 τ(H)

0

Xθ
t

2 dt . (9)

Note that P0
τ(H),X corresponds to the induced probability measure by the reflected Lévy process X0

= (X0
t := x0 + σWt +

Yt + Lt; t ≥ 0) on the Skorohod space. Then the Log likelihood function l(α) associated to the unknown α is

l(α) = σ 2 log


Pα

τ(H),X

P0
τ(H),X

 F X
τ(H)


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= −α

 τ(H)

0
XtdX c

t + α

 τ(H)

0
XtdLt −

α2

2

 τ(H)

0
X2
t dt

= −α

 τ(H)

0
XtdX c

t + αbLτ(H) −
α2

2
H, (10)

where we have used X = (Xt; t ≥ 0) to denote the RGOU process Xα
= (Xα

t ; t ≥ 0) described as (1) with the drift
α for convenience. Hence the sequential estimator (8) is derived by solving the equation d

dα l(α) = 0 w.r.t. the unknown
variable α.

To verify (i), it suffices to prove Pα


∞

0 |Xt |
2dt = ∞


= 1. We first consider the case of α > 0. Since Eα[|Y1|

2
] < ∞,

which is equivalent to the condition


∞

1 y2ν(dy) < ∞, we hence have
∞

1
yν(dy) ≤


∞

1
y2ν(dy) < ∞.

Thus the ergodic conditions of the RGOU process in Theorem 2.1 of Xing et al. (2009) are satisfied, and hence there exists a
unique stationary distribution φ∞ on B(R+) for the RGOU process (1). By the ergodic theorem, we get

lim
T→∞

1
T

 T

0
|Xt |

2dt =


[b,∞)

x2φ∞(dx) > 0,

which implies that Pα


∞

0 |Xt |
2dt = ∞


= 1. As for the case of α < 0, the RGOU process is not ergodic. However we can

use the following comparison property of RGOU processes with different drifts to deal with this case. Namely, suppose that
(X1, L1) and (X2, L2) solve the following RSDEs respectively:

dX j
t = ajX

j
tdt + σdWt + dYt + dLjt ,

Ljt =

 t

0
1

{X j
s=b}dL

j
s, (11)

X j
t ≥ b, ∀ t ≥ 0,

where j ∈ {1, 2}, b ≤ X1
0 ≤ X2

0 and −∞ < a1 < a2 < +∞.
Now let η(t) = [(X1

t −X2
t )+]

2. Then by Tanaka’s formula and note that the difference X1
t −X2

t does not consist of Brownian
component, we have

η(t) = 2
 t

0
(X1

s − X2
s )+(a1X1

s − a2X2
s )ds + 2

 t

0
(X1

s − X2
s )+d(L1s − L2s ).

Using (11), the 2nd term of r.h.s. of the above display is equal to

2
 t

0
(X1

s − X2
s )+dL1s − 2

 t

0
(X1

s − X2
s )+dL2s = 2

 t

0
(b − X2

s )+dL1s − 2
 t

0
(X1

s − b)+dL2s

= −2
 t

0
(X1

s − b)+dL2s ≤ 0,

by employing the fact that (b − X2
t )+ = 0 (since X2

t ≥ b for all t ≥ 0). Moreover, we have

2
 t

0
(X1

s − X2
s )+(a1X1

s − a2X2
s )ds = 2

 t

0
(X1

s − X2
s )+(a1X1

s − a1X2
s )ds + 2

 t

0
(X1

s − X2
s )+(a1X2

s − a2X2
s )ds

≤ 2a1

 t

0
(X1

s − X2
s )+(X1

s − X2
s )ds,

since X2
t ≥ b ≥ 0 for all t ≥ 0. We finally conclude that

0 ≤ η(t) ≤ 2a1

 t

0
η(s)ds, for all positive t.

Then η(t) = 0, Pα-a.s. by using the Gronwall’s inequality. This further yields that

0 ≤ b ≤ X1
t ≤ X2

t , Pα-a.s.,

for all t ≥ 0. For the same initial date X1
0 = X2

0 = x0 ≥ b, this comparison property shows that the RGOU process (1) with
positive drift is always not smaller than the one with negative drift. Hence it also holds that Pα


∞

0 |Xt |
2dt = ∞


= 1 in

the case of α < 0.
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By the form of the sequential estimator (8) and noting that

dX c
t = −αXtdt + σdWt + dLt ,

we arrive at

ατ(H) =
1
H


bLτ(H) −

 τ(H)

0
XtdX c

t


=

1
H


bLτ(H) + α

 τ(H)

0
|Xt |

2dt − σ

 τ(H)

0
XtdWt −

 τ(H)

0
XtdLt


= α −

σ

H

 τ(H)

0
XtdWt ,

where we used the following equality by the property (2): τ(H)

0
XtdLt = bLτ(H).

By Lemma 2.9.2 in Prakasa Rao (1999), the process (
 τ(H)

0 XtdWt; H ≥ 0) is a Pα-standard Brownian motion. Then the
sequential estimator (8) is unbiased, i.e., (ii) holds. On the other hand, the random variable

 τ(H)

0 XtdWt ∼ N(0,H), since τ(H)

0 |Xs|
2ds = H which proves that

√
H[ατ(H) −α] ∼ N(0, σ 2) for each H > 0 fixed, i.e., (iii) is valid. Finally the conclusion

(iv) follows from 1
H

 τ(H)

0 XtdWt → 0 as H → ∞ by the law of large number. �

Remark 5. For the case of two-reflecting barriers, the RGOU process can be described as

Xt = x0 − α

 t

0
Xsds + σWt + Yt + Lt − Ut ∈ [b, d], t > 0,

x0 ∈ [b, d], (12)

where U = (Ut; t ≥ 0) denotes the reflecting upper barrier dwith d > b. The regulator U is a nondecreasing, r.c.l.l. process
with U0 = 0 and it satisfies that

Ut =

 t

0
1{Xs=d}dUs, ∀ t > 0.

Differently from the regulator L at lower reflecting barrier, the regulator U indeed has jumps, whose sizes can be given by

∆Ut := Ut − Ut− = (1Yt + Xt− − d)+, t ≥ 0,

where we set U0 = U0− = 0 by convention. Let U c
t = Ut −


s≤t ∆Us be the continuous component of U . Then it also holds

that

U c
t =

 t

0
1{Xs=d}dU c

s , ∀ t > 0.

Similarly to the likelihood function given by (10), the likelihood function in the case of two-sided reflection admits the form:

l(α) = −α

 τ(H)

0
XtdX c

t + α

 τ(H)

0
XtdLt − α

 τ(H)

0
XtdU c

t −
α2

2

 τ(H)

0
X2
t dt

= −α

 τ(H)

0
XtdX c

t + αbLτ(H) − αdU c
τ(H) −

α2

2
H.

Therefore, the SMLE of the unknown drift α is given by

ατ(H) =
1
H


bLτ(H) − dU c

τ(H) −

 τ(H)

0
XtdX c

t


,

=
1
H


b
2
ℓb

τ(H) −
d
2
ℓd

τ(H) −

 τ(H)

0
XtdX c

t


, (13)

where H > 0 and ℓd
= (ℓd

t ; t ≥ 0) is the local time of the RGOU process at point d. The equality (13) follows from the
relationship U c

t =
1
2ℓ

d
t for all t ≥ 0, whose proof is very similar to that of Proposition 1.
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Table 1
The ME of the SMLEατ(H) , the MSE of the SMLEατ(H) and the SD of |ατ(H) − α|

2 .

Parameters H E[τ(H)] E[ατ(H) − α] E[|ατ(H) − α|
2
] SD of |ατ(H) − α|

2

α = 0.5 10 3.745 −0.0019 0.0987 0.1390
σ = 1 50 9.864 +0.0012 0.0199 0.0284
γ = 0.25 100 16.46 +0.0009 0.0101 0.0141
α = 1 10 3.800 −0.0062 0.4030 0.5792
σ = 2 50 13.32 +0.0043 0.0796 0.1113
γ = 0.25 100 24.77 −0.0016 0.0392 0.0554
α = 0.5 10 2.145 −0.0079 0.0973 0.1408
σ = 1 50 4.591 −0.0019 0.0202 0.0280
γ = 0.5 100 6.714 −0.0014 0.0101 0.0146
α = −0.5 10 1.938 +0.0126 0.0952 0.1335
σ = 1 50 2.903 +0.0092 0.0193 0.0267
γ = 0.25 100 3.368 +0.0080 0.0097 0.0137

We also note that the RGOU process (12) has a compact state space [b, d]. The compactness of the state space is sufficient
for the existence of a stationary distribution φ∞ on B([b, d]) of the Markov process (12) (see Pages 2390–240 in Ethier and
Kurtz, 1986). By virtue of the ergodic theorem, we have

lim
T→∞

1
T

 T

0
|Xt |

2dt =


[b,d]

x2φ∞(dx) > 0,

which implies that Pα


∞

0 |Xt |
2dt = ∞


= 1. This proves that the conclusion (i) in Theorem 3 is also valid in the case of

two-sided reflection. Similarly to the proof of Theorem 3, the conclusions (ii)–(iv) therein also hold in the case of two-sided
reflection.

4. Numerical illustrations

In this section, we present some numerical illustrations to exhibit the performance of the SMLE (τ (H),ατ(H)) given by
Theorem 3. In most practical applications the reflecting lower barrier is usually taken as b = 0 (see, e.g., Asmussen et al.,
2004; Asmussen and Pihlsgard, 2007; Avram et al., 2004, 2007; Xing et al., 2009). So we here set b = 0. From Remark 4, it
follows that the SMLE (8) becomes

ατ(H) = −
1
H

 τ(H)

0
XtdX c

t , 0 < H < +∞.

For the pure jump Lévy process Y = (Yt; t ≥ 0), we take in this section

Yt =

Nt
i=0

Ji, t > 0, and Y0 = 0,

where N = (Nt; t ≥ 0) is a Poisson process with intensity λ > 0 and (Ji; i = 1, 2, . . .) are i.i.d. random variables with
exponential density fJ(x) =

1
γ
e−

x
γ 1{x>0} which is also independent of N (here γ > 0).

We first simulate the sample paths of the ROU process (1) by using the Monte Carlo method. Here the numerical scheme
presented in Lépingle (1995) is adopted, which has the same rate of convergence as the classic Euler–Maruyama scheme.
In each numerical experiment, we generate 104 sample paths with step size 1t = 10−2. We examine the following four
different settings, respectively:

C1: α = 0.5, σ = 1, λ = 5 and γ = 0.25,
C2: α = 1, σ = 2, λ = 5 and γ = 0.25,
C3: α = 0.5, σ = 1, λ = 5 and γ = 0.5,
C4: α = −0.5, σ = 1, λ = 5 and γ = 0.25.

Table 1 reports some statistics related to the SMLE ατ(H), which include the Mean Error (ME) E[ατ(H) − α], the Mean
Square Error (MSE) E[|ατ(H) − α|

2
] and the Standard Deviation (SD) of |ατ(H) − α|

2. The mean time E[τ(H)] needed to
achieve three different H-levels are also reported.

Figs. 1–3 are plotted under the setting C1. Fig. 1 displays the MSE (the dashed line) of the SMLEατ(H) against H > 0. The
solid line in this plot is the theoreticalMSE curve of the SMLE, i.e., σ 2/H . We observe that the two lines almost coincide. Fig. 2
shows the bias of the SMLE (from Theorem 3(iii), we have the SMLEατ(H) − α ∼ N(0, σ 2/H)). Fig. 3 depicts the histogram
of the statistic

√
H[ατ(H) − α]/σ with H = 10 and H = 50. The dashed curve is the standard normal density. We find that

the SMLE works quite well (from Theorem 3(iii), we have
√
H[ατ(H) − α]/σ ∼ N(0, 1)).
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Fig. 1. The dashed line is the MSE plot for the SMLEατ(H) , and the solid line is the corresponding theoretical MSE of the SMLE.

Fig. 2. Bias.

Fig. 3. Histogram of
√
H[ατ(H) − α]/σ with H = 10 (left) and H = 50 (right). The dashed lines are the plots of the standard normal density.
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